Problem One: Order Relations

- i. What three properties does a binary relation have to have to be a partial order?
- ii. Consider the power set $\mathcal{P}(A)$ of any set A. Prove that \subseteq is a partial order over $\mathcal{P}(A)$.
- iii. Let | be the divisibility relation. We write x | y if x divides y; that is, there exists some integer $k \in \mathbb{Z}$ such that y = xk. Prove that | is a partial order over N, but that it is **not** a partial order over Z.

Problem Two: Combining Relations

Suppose that (A, \leq_A) and (B, \leq_B) are ordered sets such that \leq_A is a total order and \leq_B is a total order. Consider the set $A \times B$. Define a relationship $\leq_{A \times B}$ on $A \times B$ such that $(a_1, b_1) \leq_{A \times B} (a_2, b_2)$ iff at least one of $a_1 \leq_A a_2$ and $b_1 \leq_B b_2$ is true.

- i. Is $\leq_{A \times B}$ reflexive? If so, prove it. If not, give a counterexample.
- ii. Is $\leq_{A \times B}$ antisymmetric? If so, prove it. If not, give a counterexample.
- iii. Is $\leq_{A \times B}$ transitive? If so, prove it. If not, give a counterexample.
- iv. Is $\leq_{A \times B}$ total? If so, prove it. If not, give a counterexample.
- v. Based on your results from (i), (ii), (iii), and (iv), is $\leq_{A \times B}$ a total order?

Problem Three: Functions and Cardinality

Prove that for any sets A and B, $|A \times B| = |B \times A|$.

Problem Four: The Pigeonhole Principle

Prove that if 501 distinct natural numbers in the range 0 to 999 are chosen, there must some pair whose sum is exactly 999.