Section Handout 3

Problem One: Order Relations

i. What three properties does a binary relation have to have to be a partial order?
ii. Consider the power set $\wp(A)$ of any set A. Prove that \subseteq is a partial order over $\wp(A)$.
iii. Let \mid be the divisibility relation. We write $x \mid y$ if x divides y; that is, there exists some integer $k \in \mathbb{Z}$ such that $y=x k$. Prove that \mid is a partial order over \mathbb{N}, but that it is not a partial order over \mathbb{Z}.

Problem Two: Combining Relations

Suppose that $\left(A, \leq_{A}\right)$ and $\left(B, \leq_{B}\right)$ are ordered sets such that \leq_{A} is a total order and \leq_{B} is a total order. Consider the set $A \times B$. Define a relationship $\leq_{A \times B}$ on $A \times B$ such that $\left(a_{1}, b_{1}\right) \leq_{A \times B}\left(a_{2}, b_{2}\right)$ iff at least one of $a_{1} \leq_{A} a_{2}$ and $b_{1} \leq_{B} b_{2}$ is true.
i. Is $\leq_{A \times B}$ reflexive? If so, prove it. If not, give a counterexample.
ii. Is $\leq_{A \times B}$ antisymmetric? If so, prove it. If not, give a counterexample.
iii. Is $\leq_{A \times B}$ transitive? If so, prove it. If not, give a counterexample.
iv. Is $\leq_{A \times B}$ total? If so, prove it. If not, give a counterexample.
v. Based on your results from (i), (ii), (iii), and (iv), is $\leq_{A \times B}$ a total order?

Problem Three: Functions and Cardinality

Prove that for any sets A and $B,|A \times B|=|B \times A|$.

Problem Four: The Pigeonhole Principle

Prove that if 501 distinct natural numbers in the range 0 to 999 are chosen, there must some pair whose sum is exactly 999.

